Correction examen du 19 décembre 2013

Durée: 3 heures.

Questions de cours

1. (a) La famille $\{u_1,\ldots,u_p\}$ est libre si toute combinaison linéaire nulle est triviale. C'est-à-dire,

$$\forall \lambda_1, \dots, \lambda_p \in \mathbb{R}, \quad \lambda_1 u_1 + \dots + \lambda_p u_p = 0 \Longrightarrow \lambda_1 = \dots = \lambda_p = 0.$$

(b) La famille $\{u_1, \ldots, u_p\}$ est libre est une famille génératrice de V si V est l'espace vectoriel engendré par $\{u_1, \ldots, u_p\}$: Vect $\{u_1, \ldots, u_p\}$ = V. Autrement dit, si

pour tout
$$v \in V$$
 il existe $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ tels que $v = \lambda_1 u_1 + \ldots + \lambda_p u_p$.

- (c) La famille $\{u_1, \ldots, u_p\}$ est une base de V si elle est à la fois libre et génératrice.
- 2. La dimension d'un sous-espace vectoriel V de \mathbb{R}^n est le nombre d'éléments d'une base quelconque de V. Par convention, on dit que la dimension du sous-espace triviale $V = \{0\}$ est 0.

Si n=3, les valeurs possibles de dim V sont 0,1,2,3.

Exercice 1 —

1. On applique l'algorithme de Gauss au système linéaire (S):

$$\begin{pmatrix} 3 & -1 & 2 & a \\ 2 & 2 & -1 & b \\ -1 & 3 & -3 & c \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -1 & 2 & a \\ 0 & 8 & -7 & 3b - 2a \\ 0 & 8 & -7 & 3c + a \end{pmatrix} \begin{pmatrix} L_1 \\ 3L_2 - 2L_1 \\ 3L_3 + L_1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 3 & -1 & 2 & a \\ 0 & 8 & -7 & 3b - 2a \\ 0 & 0 & 0 & 3c + 3a - 3b \end{pmatrix} \begin{pmatrix} L_1 \\ L_2 \\ L_3 - L_2 \end{pmatrix}$$

Si $a - b + c \neq 0$, alors la dernière équation du système réduit n'a pas de solutions. Si a - b + c = 0, alors la dernière équation est 0 = 0, et le système admet une infinité de solutions. Donc le système (\mathcal{S}) admet au moins une solution si et seulement si a - b + c = 0.

2. Comme les vecteurs sont $3 = \dim \mathbb{R}^3$, la famille $\{u_1, u_2, u_3\}$ est génératrice si et seulement elle est libre (vu au cours).

Par définition, cette famille est libre si et seulement si l'unique solution du système $\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0$ est donnée par $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

Mais les trois vecteurs $u_1 = (3, 2, -1)$, $u_2 = (-1, 2, 3)$ et $u_3 = (2, -1, -3)$ sont les vecteurs colonnes du système (S).

On a vu que pour a = b = c = 0 le système (S) admet une infinité de solutions (λ_3 est un paramètre libre). Donc la famille $\{u_1, u_2, u_3\}$ n'est pas libre, et par conséquence, elle n'est pas génératrice.

Exercice 2 —

Etude d'un sous-espace vectoriel F

1. F est un sous-espace vectoriel de \mathbb{R}^3 car il est donné comme l'espace des solutions d'une équation linéaire homogène (vu au cours).

2. Il faut trouver toutes les solutions de l'équation x - 2y + 3z = 0. Dans ce cas, y et z sont des paramètres libres, et x = 2y - 3z. Pour y = 1 et z = 0, on obtient x = 2. Pour y = 0 et z = 1, on obtient x = -3. Les solutions de l'équation considerée sont donc

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}.$$

Il s'en suit que les vecteurs $v_1 = (2, 1, 0)$ et $v_2 = (-3, 0, 1)$ forment une base de F.

En effet, ils engendrent par construction, et il suffit regarder les deuxième et troisième coordonnées pour voir qu'ils ne sont pas colinéaires, donc linéairement indépendants.

Etude d'un sous-espace vectoriel G

3. Par définition, la famille $\{u_1, u_2, u_3\}$ est libre si et seulement si l'unique solution du système $\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0$ est donnée par $\lambda_1 = \lambda_2 = \lambda_3 = 0$. On met ce système en forme matriciale, et on applique l'algorithme de Gauss.

$$\begin{pmatrix}
1 & 3 & 1 & 0 \\
5 & 1 & -1 & 0 \\
1 & 3 & 1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 3 & 1 & 0 \\
0 & -14 & -6 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{array}{c}
L_1 \\
5L_2 - L_1 \\
L_3 - L_1
\end{array}$$

On voit que comme il n'y a pas de pivot dans la troisième colonne, λ_3 est un paramètre libre, et il existe des solutions non-nulles du système. Donc la famille $\{u_1, u_2, u_3\}$ n'est pas libre.

- 4. Le système considéré au point précédent a deux pivots dans les première et deuxième colonnes, ce qui nous dit que u_1 et u_2 sont linéairement indepéndants. Comme la famille $\{u_1, u_2, u_3\}$ n'est pas libre par le point précédent, on peut écrire u_3 comme combinaison linéaire de u_1 et u_2 . Donc $G = \text{Vect}(u_1, u_2)$, et u_1, u_2 forment une base de G. En particulier dim G = 2.
- 5. On veut trouver $a, b, c \in \mathbb{R}$ tels que $G = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0\} =: G'$. Comme $\{u_1, u_2\}$ est une base de G, il suffit imposer que $u_1 \in G'$ et $u_2 \in G'$. On obtient donc les deux équations

$$\begin{cases} a+5b+c=0\\ 3a+b+3c=0 \end{cases}$$

On écrit ce système en forme matricielle et on applique l'algorithme de Gauss.

$$\left(\begin{array}{cc|cc|c} 1 & 5 & 1 & 0 \\ 3 & 1 & 3 & 0 \end{array}\right) \to \left(\begin{array}{cc|cc|c} 1 & 5 & 1 & 0 \\ 0 & -14 & 0 & 0 \end{array}\right) \begin{array}{cc|cc|c} L_1 \\ L_2 - 3L_1 \end{array}.$$

Il y a des pivots dans les première et deuxième colonnes, mais pas dans la troisième colonne. Donc c est un paramètre libre. De la deuxième ligne du système réduit, on obtient b=0. De la première ligne on obtient a+c=0, donc a=-c. Pour c=1, on obtient a=-1,b=0, et donc $G=\{(x,y,z)\in\mathbb{R}\mid -x+z=0\}$.

Etude du sous-espace vectoriel engendré par F et G

- 6. $\mathcal{E} = \{v_1, v_2, u_1, u_2, u_3\}$. Le cardinal de \mathcal{E} est 5. Comme toute famille de 4 ou plus vecteurs dans \mathbb{R}^3 est toujours liée (vu au cours), la famille \mathcal{E} n'est pas libre.
- 7. On remarque que $\operatorname{Vect}(\mathcal{E}) = F + G$. Donc \mathcal{E} engendre \mathbb{R}^3 si et seulement si $\dim(F+G) = 3$. Par la formule de Grassman, on a que $\dim(F+G) = \dim F + \dim G \dim(F\cap G) = 2 + 2 \dim(F\cap G)$. On en déduit que $\dim(F+G) = 2$ ou $\dim(F+G) = 3$, et le premier cas peut arriver seulement si $\dim(F\cap G) = 2$, c'est-à-dire, si F=G.

Pour montrer que \mathcal{E} engendre \mathbb{R}^3 , il suffit montrer que $F \neq G$.

Par construction $u_1 = (1, 5, 1) \in G$. Mais si on vérifie l'équation qui définit F, on a $1 \cdot 1 - 2 \cdot 5 + 3 \cdot 1 = 1 - 10 + 3 = -6 \neq 0$, et donc $u_1 \notin F$ et $F \neq G$.

Donc \mathcal{E} est une famille génératrice de \mathbb{R}^3 .

Exercice 3 — On considère la fonction réelle f de la variable réelle x définie par $f(x) = x - \ln(x^4)$.

1. La fonction $x \mapsto x$ est définie sur tout \mathbb{R} . La fonction $y \mapsto \ln y$ est définie pour $y \in]0, +\infty[$, donc la fonction $x \mapsto \ln(x^4)$ est définie pour $y = x^4 > 0$, c'est à dire, pour $x \neq 0$. Le domaine de définition de f est donc $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

- 2. La fonction identité $x \mapsto x$ est continue sur \mathbb{R} , et donc sur \mathbb{R}^* . La fonction $g(x) = x^4$ est continue sur \mathbb{R} , et donc sur \mathbb{R}^* . L'image directe de \mathbb{R}^* par g est donnée par $]0, +\infty[$, et ln est continue sur cet intervalle. Donc la composition $x \mapsto \ln(x^4)$ est bien continue sur \mathbb{R}^* . En étant la différence de deux fonctions continues sur \mathbb{R}^* , f est continue sur \mathbb{R}^* .
- 3. On veut calculer $\lim_{x \to +\infty} x \ln(x^4)$.

$$\lim_{x \to +\infty} x = +\infty,$$

$$\lim_{x \to +\infty} x^4 = +\infty,$$

$$\lim_{y \to +\infty} \ln(y) = +\infty,$$

 $\lim_{x\to+\infty} \ln(x^4) = +\infty$, par limite d'une composition,

$$\lim_{x\to +\infty} x - \ln(x^4) = +\infty - \infty$$
, par limite d'une somme.

La dernière limite est une forme indéterminée. On remarque que $\ln(x^4) = 4 \ln x$ si x > 0, donc pour x dans un voisinage de $+\infty$. On peut écrire pour x > 0:

$$x - \ln(x^4) = x \left(1 - 4\frac{\ln x}{x}\right),$$

 $\lim_{x \to +\infty} \frac{\ln x}{x} = 0, \text{ par croissances comparées},$

 $\lim_{x\to+\infty} \left(1-4\frac{\ln x}{x}\right) = 1$, par limite d'une somme et produit par scalaire,

$$\lim_{y\to +\infty} x\left(1-4\frac{\ln x}{x}\right)=+\infty, \text{ par limite d'un produit.}$$

Donc
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

4. Pour que la fonction f soit prolongeable par continuité au point 0, il faut que la limite $\lim_{x\to 0} f(x)$ soit une valeur réelle. On a

 $\lim_{x \to 0} x^4 = 0^+$, par continuité de la fonction $x \mapsto x^4$ en 0, et le fait que $x^4 \ge 0$ dans un voisinage de 0.

 $\lim_{x\to 0} \ln x^4 = \lim_{y\to 0^+} \ln y = -\infty,$ par limite d'une composition,

 $\lim_{x\to 0} f(x) = +\infty$, par limite d'une différence.

Comme la valeur de cette limite est $+\infty \notin \mathbb{R}$, la fonction f n'est pas prolongeable par continuité au point 0.

- 5. On a $f(2) = 2 4 \ln 2 < 0 \Leftrightarrow 1 < \ln 4 \Leftrightarrow e < 4$. Comme e < 4 on a bien f(2) < 0. On a aussi $f(1) = 1 4 \ln 1 = 1 > 0$. Comme la fonction f est continue en [1, 2], f(1) > 0, f(2) < 0, par le théorème des valeurs intermédiaires, il existe $x_0 \in]1, 2[$ tel que $f(x_0) = 0$.
- 6. On procède comme pour la continuité de f. La fonction $\ln(x^4)$ est une composition de fonctions dérivables, et donc dérivable (dans \mathbb{R}^*). Donc f est la différence de deux fonctions dérivables, et donc elle est dérivable (dans \mathbb{R}^*). Pour $x \in]0, +\infty[$, on a $f(x) = x 4\ln(x)$, et $f'(x) = 1 \frac{4}{x}$.
- 7. La dérivée f' est croissante en $]0, +\infty[$. De plus f'(1) = 1 4 < 0 et f'(2) = 1 2 = -1 < 0. Il s'en suit que $f'(x) \le -1 < 0$ pour $x \in [1, 2]$, et f est strictement décroissante dans [1, 2]. Ça nous dit que $f|_{[1, 2]}$ est injective (vu au cours), et que le x_0 trouvé au point 5 est unique.

Exercice 4 —

1. Pour $x \in]0, +\infty[$, on a $f(x) = e^{-\frac{1}{x}}$. Mais $x \mapsto \frac{1}{x}$ est continue et dérivable (sur \mathbb{R}^*), et $y \mapsto e^y$ est continue et dérivable (sur \mathbb{R}). Donc $f(x) = e^{-\frac{1}{x}}$ est continue et dérivable en tout x > 0 (continuité et dérivabilité d'une composition). De façon analogue, pour $x \in]-\infty, 0[$, on a $f(x) = -x^2$, qui est bien une fonction continue et dérivable.

Donc f est continue et dérivable sur \mathbb{R}^* .

2. Par définition, f est continue en 0 si et seulement si $f(0) = \lim_{x \to 0} f(x)$. Calculons la limite de f(x) pour x qui tend vers 0 à gauche et à droite.

 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} -x^2 = 0, \text{ par continuit\'e de la fonction } -x^2 \text{ en } 0.$

 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} e^{-\frac{1}{x}} = \lim_{y\to -\infty} e^y = 0, \text{ ou on a utilis\'e la limite d'une composition, la limite d'un rapport de fonctions, et la continuit\'e de l'exponentielle.}$

Comme les deux valeurs coincident, on a que $\lim_{x\to 0} f(x) = 0 = f(0)$, et f est continue en 0.

3. $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x^2 = -\infty.$

 $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} e^{-\frac{1}{x}} = \lim_{y\to 0} e^y = 1$, où on a utilisé encore la limite d'une composition et la limite d'un rapport de fonctions.

- 4. Pour x < 0, on a $f(x) = -x^2$, et donc f'(x) = -2x. Pour x > 0, on a $f(x) = e^{-\frac{1}{x}}$, et donc $f'(x) = x^{-2}e^{-\frac{1}{x}}$. Pour ce dernier calcul on a utilisé le fait que la dérivée de $\frac{1}{x}$ est $-\frac{1}{x^2}$.
- 5. Calculer les dérivées à gauche et à droite en 0. La fonction f est-elle dérivable en 0? On va calculer la limite du taux d'accroissement.

Pour la dérivée à gauche, $\lim_{x\to 0^-} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^-} \frac{-x^2}{x} = \lim_{x\to 0^-} -x = 0.$

Pour la dérivée à droite, $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^+} \frac{e^{-\frac{1}{x}}}{x} = \lim_{y\to +\infty} ye^{-y} = 0$, par croissances comparées, on a utilisé aussi la limite d'une composition.

Donc les dérivées à droite et à gauche coïncident, et f est dérivable en 0 (avec f'(0) = 0).

6. Par les calculs faits, on a

$$f'(x) = -2x > 0$$
 pour $x < 0$,

$$f'(0) = 0,$$

$$f'(x) = x^{-2}e^{-\frac{1}{x}} > 0$$
 pour $x > 0$.

Le tableau de variations de f est donc

x	x < 0	x = 0	x > 0
f'	7	0	7

- 7. La fonction f est continue et dérivable sur \mathbb{R} , et f'>0 sur \mathbb{R}^* . On en déduit que f est strictement croissante sur $]-\infty,0]$ et sur $[0,+\infty[$, et donc sur $]-\infty,\infty[=\mathbb{R}$. Par le théorème des valeurs intermédiaires, et par monotonie stricte de f, on obtient que $f(\mathbb{R})=]\lim_{x\to -\infty}f(x),\lim_{x\to +\infty}f(x)[=]-\infty,1[$, par ce qu'on a vu au point 3
- 8. On a déjà vu que f est strictement monotone, et donc injective (vu au cours). Donc f est bien une bijection de \mathbb{R} à son image $f(\mathbb{R})$.

On appelle f^{-1} la bijection réciproque de cette fonction.

9. Montrer que f^{-1} est dérivable sur $]-\infty,0[$. Notons que $f\inf(]-\infty,0[)=]-\infty,0[$. En effet on a f(0)=0, et donc $f^{-1}(0)=0$. Comme f est continue et strictement croissante sur \mathbb{R} , on peut en déduire une propriété identique pour f^{-1} sur $f(\mathbb{R})$. On peut conclure comme dans le point f que $f^{-1}(]-\infty,0[)=]\lim_{y\to-\infty}f^{-1}(y),\lim_{y\to0^-}f^{-1}(y)[=]-\infty,0[$.

Comme f'(x) > 0 pour tout x < 0 (vu au point 6), par un théorème du cours, on a que f^{-1} est dérivable au point f(x) pour tout x < 0, et donc elle est dérivable en $f(] - \infty, 0[) =] - \infty, 0[$.

10. On veut appliquer la formule pour la dérivée d'une fonction réciproque :

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}.$$

Comme f(x) coincide avec $-x^2$ pour x < 0, on a que $f^{-1}(y) = -\sqrt{-y}$, et donc $f^{-1}(-1/4) = -\sqrt{1/4} = -1/2$. Comme f'(x) = -2x pour x < 0, on a

$$(f^{-1})'(-1/4) = \frac{1}{f'(-1/2)} = \frac{1}{-2 \cdot (-1/2)} = 1.$$